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Experiments

Robustness to Geometric Data Shifts

Weighted Conformal Prediction

Under geometric distribution shifts, 
pretrained models often deteriorate, 
resulting in poor performance and 
uninformative prediction intervals.

mAP C4-mAP

Mask-RCNN 47.81 12.79

Tab: Zero-shot Mask-RCNN segmentation 
performance (mAP) on regular and C4-
rotated COCO data.

Geometry for Conformal Prediction
Conformal prediction requires exchangeability — invariance to the permutation 
group  — between calibration and test data to guarantee valid coverage.


Under geometric shifts, calibration and test samples undergo transformations 
, leading to a distribution over -shifted data: 


Consistent calibration and test transformations maintain (shifted) 
exchangeability, but conformal prediction intervals become uninformative due 
to poor performance of the pretrained predictor (data—model misalignment).


 A canonicalization network  restores predictor invariance to  by 
neutralizing the transformation: 


This enforces exchangeability over , and ensures that the distribution 
over canonicalized samples remains invariant under .
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We propose using 
geometric information to 
preserve exchangeability in 
conformal prediction under 
distribution shifts, acquired 
via canonicalization [1,2].

No Shift
Model Coverage Coverage

71.66 33.68

60.13 58.27

62.53 60.82

65.46 63.94

Tab: Accuracy and conformal metrics on CIFAR-100 for target coverage of 95% under -shift. 
See our paper for additional CIFAR-10 (image) and ModelNet40 (point cloud) results.
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Estimated group elements  can 
inform and robustify Conformal 
Prediction in different ways.
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Can be used to select calibration samples with 
similar orientation, delaying coverage breakdown 
under additional geometric shifts. 

Fig: Induced gradual shift from C4 to SO(2).

Conditional Group Distributions

Conditional -shifts can be detected (data 
diagnostics) and used downstream for better 
partition-conditional coverage (by proxy).

Fig: True (top) and recovered (bottom) conditional shifts.
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