Leveraging Geometry for Conformal Prediction

via Canonicalization
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Under geometric distribution shifts,

pretrained models often deteriorate, Tab: Zero-shot Mask-RCNN segmentation

resulting in poor performance and performance (MAP) on regular and C4-

uninformative prediction intervals. rotated COCO data.

We propose using Input Canonicalizer Pretrained predictor

geometric information to z 1

preserve exchangeability in
conformal prediction under
distribution shifts, acquired
via canonicalization [1,2].

Co fe
g -z
S X ._‘r‘-
g > >0 AL > > v

Geometry for Conformal Prediction

O Conformal prediction requires exchangeability — invariance to the permutation
group S, — between calibration and test data to guarantee valid coverage.

O Under geometric shifts, calibration and test samples undergo transformations
g: € G, leading to a distribution over G"-shifted data: x; — g. - x;

O Consistent calibration and test transformations maintain (shifted)
exchangeability, but conformal prediction intervals become uninformative due
to poor performance of the pretrained predictor (data—model misalignment).

O A canonicalization network c, restores predictor invariance to G by
neutralizing the transformation: c,(g; - x)™! - g; - x; = c(x) ™! - x;

O This enforces exchangeability over Sn X (G", and ensures that the distribution
over canonicalized samples remains invariant under G".
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Robustness to Geometric Data Shifts

No Shift C8 Rotation Shift
Model Acc 1 Coverage  Setsize | Acc 1 Coverage _ Set size |
f, 71.66  9509+.3  6.21+.1 33.68  95.63+.1 & 61.40%.5
fy+S0(2) 60.13  9502+.5 11.36+.4 5827  9500+.4 11.21%.3
fo+C8 62.53  95.38+.5 10.76+.4  60.82  9526+.2 10.97+.2
CP?(G =8)| 6546  9534+4 11.20%.4 63.94 94.82+.3 11.30t.4

Tab: Accuracy and conformal metrics on CIFAR-100 for target coverage of 95% under G-shift.
See our paper for additional CIFAR-10 (image) and ModelNet40 (point cloud) results.

Weighted Conformal Prediction

Can be used to select calibration samples with
similar orientation, delaying coverage breakdown
under additional geometric shifts.

Fig: Induced gradual shift from C4 to SO(2).
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Conditional Group Distributions

Conditional G-shifts can be detected (data
diagnostics) and used downstream for better
partition-conditional coverage (by proxy).

Fig: True (top) and recovered (bottom) conditional shifts.
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