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Experiments

Uncertainty-Guided Model Selection

A growing number of equivariant and non-equivariant models are being 
developed which encode geometric inductive biases to various extents. 


We want a lightweight, post-hoc way to compare model classes and assess 
the fit of their inductive biases with minimal alterations. Can uncertainty help?
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Fig: Uncertainty-based measures on ModelNet40. ‘NLL’ refers to the negative log-likelihood of the 
model’s direct softmax output, while ‘log Marg Lik’ refers to the Bayesian notion.

Outlook

Target

Invariant 0.0025 -101084 767 -101851 0.0204 22064
Equivariant 0.0083 -101091 723 -101814 0.0145 22940
Augment 0.0048 -101086 799 -101886 0.0254 20826
Plain 0.0038 -101086 798 -101884 0.0296 19622
Invariant 0.0102 -101097 1530 -102628 0.0613 768
Equivariant 0.0290 -101176 1515 -102691 0.0522 9014
Augment 0.0153 -101112 1521 -102633 0.0679 -3732
Plain 0.0106 -101100 1564 -102664 0.0888 -19273
Invariant 0.2540 -101083 1211 -102295 23.4848 20586
Equivariant 2.9681 -101084 1243 -102327 21.3705 20989
Augment 0.7900 -101083 1149 -102233 27.4825 19461
Plain 0.2288 -101083 1148 -102231 33.6994 17578

Tab: QM9 results. Predictive error (via the mean absolute error) and data fit via the log-likelihood 
(LogLik), Bayesian model complexity, and the overall log-marginal likelihood (Log-MargLik)
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Tasks. Classification on ModelNet40 and Regression on QM9.


Model Catalogue. Four variants of Rapidash [1]:

• Invariant —invariant message passing

• Equivariant — equivariant layers

• Augment — SO(3)-augmented training

• Plain — fully unconstrained


Metrics. We compare frequentist, Bayesian, and calibration-based measures 
to naive error-based evaluation: 
• Conformal prediction interval size

• ECE & Brier score (calibration) 
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Model complexity

log p(D |M) ≈ log p(D |θ*, M)

Data fit

p(D |M) = ∫ p(D |θ, M) p(θ |M) dθ

?Which one 
to choose

We use Last Layer Laplace [2] as a lightweight model-agnostic option to 
compute the marginal likelihood for pretrained models. Then we obtain

• Test data likelihood

• Bayesian marginal likelihood


Recall Bayesian model selection:

	 TPM @

• Frequentist and calibration based metrics align directly with performance

• Naive Marg. Lik. via Laplace selects models inconsistently; does not seem to 

pick up on last-layer feature differences induced by geometric constraints.

• How to design flexible priors informed by equivariant representations for 

symmetry-aware Bayesian model selection ? 
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