On Equivariant Model Selection through the Lens of Uncertainty

Putri van der Linden, Alexander Timans, Dharmesh Tailor, Erik Bekkers

Amsterdam Machine Learning Lab (AMLab), University of Amsterdam

TPM @ uai 2025

Motivation

A growing number of equivariant and non-equivariant models are being developed which encode geometric inductive biases to various extents.

We want a *lightweight*, *post-hoc* way to compare model classes and assess the fit of their inductive biases with minimal alterations. Can uncertainty help?

Uncertainty-Guided Model Selection

Tasks. Classification on ModelNet40 and Regression on QM9.

Model Catalogue. Four variants of Rapidash [1]:

- Invariant invariant message passing
- Equivariant equivariant layers
- Augment SO(3)-augmented training
- Plain fully unconstrained

Metrics. We compare frequentist, Bayesian, and calibration-based measures to naive error-based evaluation:

- Conformal prediction interval size
- Test data likelihood
- ECE & Brier score (calibration)
- Bayesian marginal likelihood

Which one

to choose

Recall Bayesian model selection: $p(D|M) = \int p(D|\theta,M) p(\theta|M) d\theta$

We use Last Layer Laplace [2] as a lightweight model-agnostic option to compute the marginal likelihood for pretrained models. Then we obtain

$$\log p(D \mid M) \approx \underbrace{\log p(D \mid \theta_*, M)}_{\text{Data fit}} - \underbrace{\left[\frac{1}{2} \log |\frac{1}{2\pi} \mathbf{H}_*| - \log p(\theta_* \mid M)\right]}_{\text{Model complexity}}$$

Experiments

		Train data D_{train}				Test data $D_{\it test}$	
Target	ModelM	MAE ↓	LogLik ↑	Complexity ↓	Log- MargLik ↑	MAE ↓	LogLik ↑
μ	Invariant	0.0025	-101084	767	-101851	0.0204	22064
	Equivariant	0.0083	-101091	723	-101814	0.0145	22940
	Augment	0.0048	-101086	799	-101886	0.0254	20826
	Plain	0.0038	-101086	798	-101884	0.0296	19622
α	Invariant	0.0102	-101097	1530	-102628	0.0613	768
	Equivariant	0.0290	-101176	1515	-102691	0.0522	9014
	Augment	0.0153	-101112	1521	-102633	0.0679	-3732
	Plain	0.0106	-101100	1564	-102664	0.0888	-19273
ϵ_{HOMO}	Invariant	0.2540	-101083	1211	-102295	23.4848	20586
	Equivariant	2.9681	-101084	1243	-102327	21.3705	20989
	Augment	0.7900	-101083	1149	-102233	27.4825	1946
	Plain	0.2288	-101083	1148	-102231	33.6994	17578

Tab: QM9 results. Predictive error (via the mean absolute error) and data fit via the log-likelihood (LogLik), Bayesian model complexity, and the overall log-marginal likelihood (Log-MargLik)

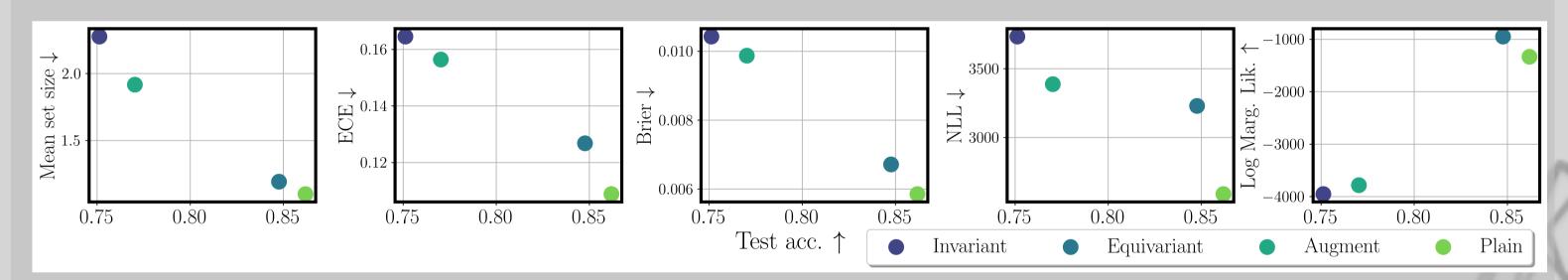


Fig: Uncertainty-based measures on ModelNet40. 'NLL' refers to the negative log-likelihood of the model's direct softmax output, while 'log Marg Lik' refers to the Bayesian notion.

Outlook

- Frequentist and calibration based metrics align directly with performance
- Naive Marg. Lik. via Laplace selects models inconsistently; does not seem to pick up on last-layer feature differences induced by geometric constraints.
- How to design flexible priors informed by equivariant representations for symmetry-aware Bayesian model selection?

References

