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Model inference should be dynamic based on user or data 
conditions. A simple yet effective solution is to permit 
intermediate exiting of model layers (EENNs).
▶︎ Problem: How to select the EENN’s exit condition  to 
balance the performance vs. efficiency trade-off.
▶︎ Solution (TLDR): Employ post-hoc, distribution-free risk 

control to resolve the trade-off according to user 
specifications with statistical guarantees.
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Motivation

Early-Exiting with Risk Control

Experiments

References

Early-Exit Neural Networks (EENNs)

Marginal monotonicity assumption:

Empirical threshold:
▶︎ No guarantees !

Conformal Risk Control (CRC):
▶︎ Risk control in expectation:

Upper Confidence Bound (UCB):
▶︎ Risk control w. high probability: 

INPUT
▶︎ Exit threshold candidates 
▶︎ Early-exit risk of the form

▶︎ User-defined risk settings

OUTPUT
▶︎ Risk-controlling exit threshold 

▶︎ Prediction control with task-
specific losses

▶︎ Predictive distribution control 
with ‘Brier score’ loss

▶︎ Labelled and unlabelled data

Framework

Options

Image Classification

▶︎ Verify that risk is controlled on test data, i.e.                         (across multiple trials)
▶︎ Assess obtained efficiency gains in terms of average exit layer (across samples & multiple trials)

Semantic Segmentation

Language Modeling

Image Generation

▶︎ Generalizes 
across varying 
black-box early-
exit architectures
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RG(ŷ)(0°1) RG( p̂) (Brier) RC(ŷ)(0°1) RC( p̂) (Brier)
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▶︎ Generalizes 
across varying 
confidence 
measures
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▶︎ Applicable 
to novel 
tasks 
(Diffusion)

▶︎ Outperforms 
existing method 
Learn-then-Test  
(LTT) used by 
CALM
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